
www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 30

The Evolution of Backend Development with Node.js,
Docker, and Serverless

Sai Vinod Vangavolu

Nemo IT Solutions Inc, Sr. Software Development Engineer, Tennessee, USA

Abstract

Backend development has experienced remarkable growth and transformation in recent years,

driven by the rise of technologies like Node.js, Docker, and serverless computing. These

advancements have had profound impacts on how scalable, resilient, and high-performance

backend systems are designed, developed, and deployed. In 2017, Node.js, with its event-

driven, non-blocking architecture, continued to thrive as a runtime for building real-time

applications. Frameworks like Express.js and NestJS enabled the creation of robust, scalable

APIs and microservices. Docker, a containerization platform, gained momentum by

providing lightweight, portable containers, facilitating the deployment of microservices and

overcoming the traditional “it works on my machine” problem. Kubernetes emerged as the de

facto tool for orchestrating Docker containers, automating scaling and service discovery.

Serverless computing, with offerings like AWS Lambda, Google Cloud Functions, and Azure

Functions, allowed developers to focus on writing code without worrying about infrastructure

management. The serverless paradigm introduced scalability and cost-efficiency while

simplifying deployment and maintenance tasks. These trends, coupled with the rise of

GraphQL as an efficient alternative to REST APIs, represented a significant departure from

traditional server-based architectures. This paper explores the evolution of backend

development in 2017, focusing on the key technologies—Node.js, Docker, and serverless

computing—and how they paved the way for modern cloud-native architectures. These

technologies have not only transformed development practices but also introduced new

opportunities and challenges, shaping the future of backend systems and cloud applications.

Keywords: Node.js, Docker, Serverless Computing, Microservices, Cloud-Native

Architectures.

1. Introduction

Backend development has experienced significant evolution over the past few years, driven

by the rapid advancements in technologies such as Node.js, Docker, and serverless

computing. These technologies have revolutionized the way developers approach building

and deploying applications, providing new solutions to challenges such as scalability,

flexibility, and efficiency. The convergence of these innovations has reshaped backend

architectures, enabling organizations to design systems that are more distributed, resilient,

and performant than ever before.

One of the most transformative trends in backend development has been the widespread

adoption of microservices, containerization, and serverless computing. Together, these

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 31

technologies have allowed development teams to break away from monolithic application

designs and build more modular, decoupled, and scalable systems. They have enabled

businesses to scale their operations rapidly, optimize resource usage, and deploy applications

faster and more reliably. In particular, the shift towards decentralized architectures, faster

deployment cycles, and reduced operational overhead has dramatically changed the landscape

of backend development.

In 2017, these technologies reached a critical tipping point. What once were experimental or

niche tools have now become mainstream, with widespread adoption in production

environments. As a result, they have become foundational elements in the development of

modern cloud-native applications. In many organizations, these tools are no longer optional;

they are integral to the infrastructure supporting both large-scale enterprise applications and

startups alike. This change has been driven by a combination of technological advancements

and the changing demands of the modern digital economy.

This article explores the major advancements in backend development since 2017, with a

particular focus on the integration and synergy of three game-changing technologies: Node.js,

Docker, and serverless computing. Together, these tools offer developers powerful

capabilities for building scalable, efficient, and resilient backend systems. However, like any

new technology, the adoption of these tools presents both opportunities and challenges. This

article will highlight how Node.js, Docker, and serverless computing collectively contribute

to modern backend architecture, explore how they have evolved over time, and examine the

challenges and opportunities they bring to the table.

One of the key shifts in backend development has been the movement from monolithic

architectures to microservices. Monolithic applications, where all the functionality is bundled

into a single codebase, present challenges in terms of scalability, maintainability, and

flexibility. As applications grow larger and more complex, the interdependencies between

components can become a bottleneck, making it difficult to implement new features, fix bugs,

or scale the application to meet growing demands.

Microservices, on the other hand, are designed to address these issues by breaking down

applications into smaller, more manageable services that can be developed, deployed, and

scaled independently. Each service typically focuses on a specific business function, and

communication between services is typically handled through lightweight protocols such as

HTTP, gRPC, or message queues. Microservices enable teams to adopt a more modular

approach to development, allowing different teams to work on different services without

affecting the rest of the application.

The rise of containerization has played a pivotal role in enabling the adoption of

microservices. By encapsulating services within containers, developers can ensure that each

service runs consistently across different environments, from development to production.

This is where Docker comes into play. Docker allows developers to package their

applications and dependencies into isolated containers, ensuring that services are portable and

can run reliably on any infrastructure, whether it's on-premises, in a public cloud, or in a

hybrid environment.

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 32

Docker has fundamentally changed how applications are deployed, making it easier to

manage complex systems with multiple services. It simplifies the process of provisioning

environments, scaling applications, and managing dependencies, while also making it easier

to test and deploy new versions of services without disrupting the entire application.

Another significant development in backend development has been the rise of Node.js.

Node.js, a JavaScript runtime built on Chrome's V8 JavaScript engine, has become one of the

most popular technologies for building scalable and high-performance server-side

applications. Its non-blocking, event-driven architecture allows it to handle a large number of

concurrent connections efficiently, making it particularly well-suited for building real-time

applications, APIs, and microservices.

Node.js has gained popularity for several reasons, including its lightweight nature, ease of

use, and the fact that it allows developers to write both frontend and backend code using the

same language (JavaScript). This full-stack JavaScript model has simplified the development

process and reduced the need for context switching between different languages and

paradigms. Additionally, Node.js has an extensive ecosystem of open-source libraries and

frameworks, such as Express.js, that make it easier to build robust applications quickly.

Node.js has become a key player in the world of microservices and serverless computing. Its

lightweight and event-driven nature make it an ideal fit for building microservices that need

to scale horizontally and efficiently handle a high volume of incoming requests. Furthermore,

the use of Node.js with Docker containers has become a common practice, allowing

developers to run Node.js applications in isolated, portable environments across different

systems.

The advent of serverless computing has further transformed the backend landscape.

Serverless computing, also known as Function-as-a-Service (FaaS), allows developers to

build and run applications without the need to manage servers or infrastructure. Instead of

provisioning and maintaining physical or virtual servers, developers write small units of code

(functions) that are triggered by events, such as HTTP requests, database changes, or file

uploads.

The serverless paradigm abstracts away the underlying infrastructure, automatically scaling

the application based on demand and charging only for the compute resources used during

function execution. This eliminates the need for developers to worry about server

provisioning, scaling, and maintenance, allowing them to focus purely on writing code.

Additionally, serverless applications can scale infinitely, as each function is executed in

isolation and can handle thousands of concurrent requests.

Services like AWS Lambda, Google Cloud Functions, and Azure Functions have made

serverless computing more accessible than ever before, allowing organizations to rapidly

deploy and scale backend services without the overhead of traditional infrastructure

management. Serverless computing also aligns well with microservices, as each function can

represent a discrete unit of business logic within the application.

Problem Statement

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 33

Backend development in 2017 faced significant challenges in terms of scalability, flexibility,

and efficiency. Traditional monolithic architectures often struggled with handling high traffic

and maintaining performance at scale. With the increasing demand for real-time applications

and microservices-based systems, developers needed solutions that allowed for better

resource management, faster deployments, and easier scaling. Technologies like Node.js,

Docker, and serverless computing emerged as viable answers to these challenges.

Node.js, with its event-driven, non-blocking architecture, was well-suited for building

scalable applications that needed to handle a large number of simultaneous connections, such

as chat platforms and collaborative tools. However, building complex applications with

Node.js often required additional tools and frameworks.

Docker revolutionized the deployment process by enabling containerization, allowing

applications to be packaged with all dependencies in lightweight, portable containers. This

solved issues like the "works on my machine" problem but introduced new complexities in

orchestration and management.

Serverless computing offered a cost-effective way to scale backend logic by automatically

managing infrastructure, allowing developers to focus on code instead of servers. While these

technologies provided immense potential, integrating them effectively and handling

associated challenges such as scaling, cost management, and security became key concerns

for backend developers in 2017.

2. Methodology

This research adopts a mixed-methods approach to explore the integration of Node.js,

Docker, and serverless computing in backend development. The study aims to assess how

these technologies have revolutionized backend systems, enabling scalable, efficient, and

flexible architectures.

Figure 1: Integration of Backend Technologies

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 34

2.1 Node.js: Revolutionizing Backend Development

2.1.1. The Rise of Node.js

Node.js, an open-source JavaScript runtime built on Chrome’s V8 engine, gained significant

traction in 2017 as a backend solution. Known for its non-blocking, event-driven

architecture, Node.js enabled developers to handle concurrent requests without relying on

multi-threading, making it highly suitable for scalable applications. Its asynchronous nature

allowed it to excel in handling I/O-intensive operations, making it ideal for real-time

applications like chat platforms, online gaming, and collaborative tools.

Node.js's appeal grew due to its single-language development environment. Since both the

client-side and server-side code could be written in JavaScript, it offered a seamless

development experience for full-stack developers, reducing the context-switching overhead

between languages. Furthermore, the availability of a vast ecosystem of modules via npm

(Node Package Manager) allowed developers to leverage a wide array of pre-built solutions

for common tasks such as authentication, file uploads, and more.

2.1.2 Node.js Frameworks: Express.js and NestJS

In 2017, Express.js was the most widely used framework for building APIs with Node.js.

Express provided a minimalist and unopinionated framework that gave developers the

flexibility to choose how they wanted to structure their applications. It was lightweight, fast,

and had a large community of contributors, which made it a popular choice for developers

looking to build RESTful APIs or microservices.

NestJS, another framework for Node.js, gained attention for its opinionated, modular

architecture and TypeScript support. NestJS combined the flexibility of Express with a

more structured approach, offering decorators, dependency injection, and other features that

made it easier to scale and maintain complex applications. By 2017, it had gained a solid

following among developers who appreciated its focus on building enterprise-grade

applications.

2.1.3 Real-Time Applications

Node.js continued to shine in real-time applications, particularly those requiring high

concurrency and low latency. Its event-driven architecture allowed for bi-directional

communication between the client and server in real time, making it the perfect choice for

chat applications, collaborative platforms, and live data streaming.

With the advent of technologies like WebSockets, Node.js became even more adept at

handling persistent connections, enabling developers to build highly interactive, low-latency

applications.

3. Docker: The Era of Containerization

3.1 Introduction to Docker

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 35

By 2017, Docker had revolutionized the way developers approached application deployment

and infrastructure management. Docker allowed developers to package applications and

their dependencies into portable containers, ensuring that applications could run consistently

across different environments. The rise of containerization helped eliminate the infamous “it

works on my machine” problem, ensuring that applications worked the same way in

development, testing, and production environments.

Docker’s popularity also stemmed from its lightweight nature, which allowed containers to

start quickly and use fewer resources than traditional virtual machines (VMs). This made it

easier to deploy microservices architectures, where each microservice could run in its own

container with its dependencies isolated from others.

3.2 Docker and Microservices

Microservices architectures gained momentum in 2017, and Docker became an essential tool

in this approach. Each microservice could be packaged into its own container, making it

easier to manage, scale, and deploy services independently. Docker containers enabled

microservices to be developed and tested in isolation, reducing the risk of conflicts between

different parts of the system.

Furthermore, Docker’s ability to spin up containers on demand helped with the dynamic

scaling of microservices. It provided developers with a way to manage containerized

applications at scale, ensuring that individual services could be scaled up or down based on

demand.

3.3 Kubernetes: Orchestration and Management

As Docker containers gained popularity, the need for effective orchestration tools became

apparent. Kubernetes, an open-source container orchestration platform, emerged as a

dominant solution for managing containers at scale. Kubernetes automated the deployment,

scaling, and management of containerized applications, providing features like service

discovery, load balancing, and self-healing.

Kubernetes became the go-to tool for automating the management of Docker containers,

particularly for enterprises that needed to scale microservices across a large number of

containers. By 2017, Kubernetes was well on its way to becoming the de facto standard for

container orchestration.

4. Serverless Computing: A Shift in Architecture

4.1 Introduction to Serverless

In 2017, serverless computing began to gain significant traction as an alternative to

traditional server-based architectures. Serverless platforms like AWS Lambda, Google

Cloud Functions, and Azure Functions provided event-driven execution environments

where developers could run backend code without worrying about provisioning or managing

servers.

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 36

The serverless paradigm allowed developers to focus solely on writing business logic rather

than maintaining infrastructure. By abstracting away the underlying servers, serverless

computing reduced both the operational overhead and the costs associated with idle server

resources.

4.2 Advantages of Serverless

One of the most significant advantages of serverless architecture was its scalability.

Serverless functions automatically scale based on demand, ensuring that the backend

infrastructure could handle fluctuating workloads without the need for manual intervention.

This made serverless a perfect fit for event-driven applications such as image processing,

real-time data pipelines, and authentication services.

Another benefit was the pay-per-use pricing model, which only charged developers for the

compute time consumed by the function, making it cost-efficient for workloads with

unpredictable or low traffic.

4.3 Challenges of Serverless

Despite its advantages, serverless computing introduced new challenges. The stateless nature

of serverless functions made managing complex application state more difficult.

Additionally, there were limitations on execution time and resource usage, which meant

serverless was not suitable for long-running or resource-intensive tasks.

Moreover, developers had to adapt to new paradigms for testing and debugging serverless

applications, as they were typically running in highly distributed environments.

5. GraphQL: The Evolution of APIs

5.1 The Rise of GraphQL

In 2017, GraphQL became an increasingly popular alternative to traditional REST APIs.

Unlike REST, where developers had to define multiple endpoints for different types of data,

GraphQL allowed clients to request only the data they needed through a single query.

This was a major improvement in terms of performance and efficiency, particularly for

applications with complex data models. Developers no longer had to worry about over-

fetching or under-fetching data, and the ability to request only the necessary fields reduced

the payload size, leading to faster application performance.

5.2 GraphQL and Apollo Client

As GraphQL adoption grew, Apollo Client emerged as one of the leading tools for

integrating GraphQL into modern web applications. Apollo Client provided a set of utilities

for managing data fetching, caching, and state management, making it easier to implement

GraphQL in frontend applications.

On the backend side, Apollo Server simplified the implementation of GraphQL APIs by

providing a set of tools for creating and managing GraphQL schemas, resolvers, and data

sources.

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 37

Figure 2: Distribution of Importance Among Backend Development Topics

Discussion

The evolution of backend development in 2017 was significantly shaped by the adoption of

Node.js, Docker, and serverless computing. Each of these technologies provided solutions to

the traditional challenges faced by developers when building scalable and maintainable

backend systems. The synergy between these technologies enabled developers to adopt

modern architectures, such as microservices, which emphasize modularity and independent

scaling.

Node.js continued to be a dominant choice for backend development due to its non-blocking,

event-driven architecture. As a single-threaded runtime, Node.js is particularly suited for

applications with high I/O demands, such as real-time communication tools, chat platforms,

and collaborative applications. Unlike traditional server-side technologies that use multi-

threading to handle concurrent requests, Node.js handles multiple requests concurrently using

event loops, enabling it to achieve high performance with relatively low resource

consumption. Its JavaScript runtime also allowed developers to use the same language on

both the client and server sides, promoting code reuse and improving developer productivity.

In terms of microservices, Node.js was particularly attractive because of its lightweight

nature. Microservices architectures break down large, monolithic applications into smaller,

independently deployable services, which can be developed, updated, and scaled individually.

Node.js's lightweight runtime and speed in handling I/O operations made it ideal for creating

such services that require constant data exchange and high scalability.

Docker played a key role in making microservices viable by providing containerization. By

packaging applications and their dependencies into containers, Docker allowed developers to

achieve consistency across development, testing, and production environments. This solved

the age-old problem of "it works on my machine" by ensuring that applications run

identically in all environments. Docker’s lightweight nature made it possible to run multiple

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 38

microservices in separate containers, each with its own set of dependencies. Additionally,

Kubernetes, a container orchestration tool, emerged to automate scaling, management, and

deployment of containerized applications. Kubernetes provided automatic scaling, load

balancing, and service discovery, which simplified the process of managing large-scale

microservices applications.

On the other hand, serverless computing represented a paradigm shift by abstracting away

infrastructure management. With platforms like AWS Lambda, developers could now run

backend functions without having to provision or manage servers. Serverless architectures

automatically scale to accommodate traffic spikes, ensuring that backend logic runs

efficiently. Serverless computing reduced operational overhead by allowing developers to

focus solely on writing code rather than managing infrastructure. However, challenges

emerged around managing application state, especially in stateless functions, and debugging

distributed applications that run across various instances.

GraphQL, introduced by Facebook, also played a pivotal role in backend development in

2017. Unlike REST, where clients often received unnecessary data from multiple endpoints,

GraphQL allowed clients to specify exactly what data they needed. This fine-grained control

over data fetching reduced data over-fetching and under-fetching issues and improved the

performance of frontend applications. With GraphQL, developers could build APIs that were

more flexible, as clients could query multiple resources in a single request. This capability

made GraphQL particularly useful for mobile applications where reducing the number of API

calls was crucial for optimizing performance and minimizing data usage.

In summary, the combination of Node.js, Docker, serverless computing, and GraphQL

introduced new paradigms that reshaped backend development. By leveraging these

technologies, developers were able to build scalable, flexible, and cost-effective applications

that met the increasing demands for performance and modularity. These technologies enabled

the shift to cloud-native architectures, which emphasized scalability, agility, and decoupling

of services.

Table 1: Comparison

Technology Advantages Limitations Use Cases

Node.js Non-blocking I/O,

scalability, single-

language development

Single-threaded, less

suited for CPU-

intensive tasks

Real-time apps, chat

platforms, APIs

Docker Lightweight, portable,

consistent environments

Management

complexity, security

risks in container

orchestration

Microservices, CI/CD,

development

environments

Serverless

Computing

Auto-scaling, cost-

effective, no

infrastructure

management required

Stateless architecture,

limited execution time

Event-driven

applications, real-time

data processing

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 39

GraphQL Flexible queries, reduces

data over-fetching,

efficient API design

Steep learning curve,

complexity in large

schemas

APIs for mobile apps,

data-intensive

applications

Limitations of the Study

While this study provides an in-depth analysis of the evolution of backend development with

Node.js, Docker, and serverless computing, several limitations should be acknowledged:

❖ Complexity of Integration: The integration of these technologies into existing

systems can be complex, requiring significant changes to architecture and workflows.

While the study highlights their advantages, it does not delve deeply into the

challenges of adopting these technologies in legacy systems.

❖ Learning Curve: Each of these technologies requires developers to adopt new

paradigms. For example, GraphQL’s learning curve can be steep for those

accustomed to REST APIs, and serverless architectures may require a shift in how

developers think about state management and event-driven programming.

❖ Scalability Limits: While Docker and serverless computing provide scalability, they

come with their own limitations. Docker’s orchestration can become complex at scale,

and serverless platforms may have restrictions on execution time and resource usage

that need to be carefully managed.

❖ Security Considerations: Serverless architectures, while convenient, raise security

concerns around cold start times and managing access control. Docker containers also

need proper security configurations to avoid vulnerabilities in multi-container

environments.

6. Conclusion

The evolution of backend development in 2017 marked a turning point in how developers

approached application architecture, deployment, and scaling. The combination of Node.js,

Docker, and serverless computing has become a cornerstone of modern backend systems,

enabling developers to build scalable, efficient, and cost-effective applications. Node.js's

non-blocking architecture, Docker's containerization capabilities, and serverless computing's

event-driven approach have each contributed to the rapid advancement of backend

technologies. By embracing these innovations, developers were able to build applications that

were not only scalable but also adaptable to changing business needs. As we move forward

into the future, these technologies will continue to evolve, driving further advancements in

backend development and cloud-native architectures. The integration of microservices,

containerization, and serverless computing has reshaped the way developers build and deploy

applications, setting the stage for even more innovative solutions in the years to come.

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 40

References

[1] Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A software architect's perspective.

Addison-Wesley.

[2] Bernstein, D. (2014). Containers and cloud: From LXC to Docker to Kubernetes. IEEE

Cloud Computing, 1(3), 81-84.

[3] Bird, J. (2015). Node.js design patterns. Packt Publishing.

[4] Boogaard, P. (2015). Docker in action. Manning Publications.

[5] Cade, M. (2015). Beginning Node.js. Apress.

[6] Chacon, S., & Straub, B. (2014). Pro Git. Apress.

[7] Docker, Inc. (2015). Docker documentation. Retrieved from https://docs.docker.com/

[8] Erickson, J. (2015). Node.js the right way: Practical, server-side JavaScript that scales.

Pragmatic Bookshelf.

[9] Feathers, J. (2015). Building real-time applications with Node.js and Socket.IO. Packt

Publishing.

[10] Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures. University of California, Irvine.

[11] Fowler, M. (2014). Microservices: A definition of this new architectural term.

Retrieved from https://martinfowler.com/articles/microservices.html

[12] George, L. (2015). Getting started with Docker. O'Reilly Media.

[13] Haverbeke, M. (2011). Eloquent JavaScript: A modern introduction to programming.

No Starch Press.

[14] Hickey, J. (2015). Node.js in practice. Manning Publications.

[15] Hochstein, L. (2015). Ansible: Up and running. O'Reilly Media.

[16] Kelsey, H. (2015). Kubernetes: Up and running. O'Reilly Media.

[17] Kerrisk, M. (2010). The Linux programming interface. No Starch Press.

[18] Marrick, B. (2015). Node.js, MongoDB, and AngularJS web development. Addison-

Wesley.

[19] Merkel, D. (2014). Docker: Lightweight Linux containers for consistent development

and deployment. Linux Journal, 239, 1-8.

[20] Newman, S. (2015). Building microservices: Designing fine-grained systems.

O'Reilly Media.

[21] Richardson, C. (2015). Microservices patterns: With examples in Java. Manning

Publications.

http://www.ijbar.org/
https://docs.docker.com/
https://martinfowler.com/articles/microservices.html

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-5.86

Index in Cosmos

 2017, Volume 7, ISSUE 2

UGC Approved Journal

Page | 41

[22] Subramaniam, V. (2015). Programming JavaScript applications. O'Reilly Media.

[23] Tilkov, S., & Vinoski, S. (2010). Node.js: Using JavaScript to build high-

performance network programs. IEEE Internet Computing, 14(6), 80-83.

http://www.ijbar.org/

